Home > Articles > Cisco Network Technology > Wireless/Optical/High Speed > CCENT/CCNA ICND1 Exam Guide: Introduction to Wireless LANs

CCENT/CCNA ICND1 Exam Guide: Introduction to Wireless LANs

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Jul 15, 2008.

Chapter Description

This chapter examines the basic concepts, standards, installation, and security options for some of the most common WLAN technologies today.

Wireless LAN Concepts

Many people use WLANs on a regular basis today. PC sales continue to trend toward more laptop sales versus desktop computers, in part to support a more mobile workforce. PC users need to connect to whatever network they are near, whether at work, at home, in a hotel, or at a coffee shop or bookstore. The migration toward a work model in which you find working moments wherever you are, with a need to be connected to the Internet at any time, continues to push the growth of wireless LANs.

For example, Figure 11-1 shows the design of a LAN at a retail bookstore. The bookstore provides free Internet access via WLANs while also supporting the bookstore's devices via a wired LAN.

Figure 11-1

Figure 11-1 Sample WLAN at a Bookstore

The wireless-capable customer laptops communicate with a WLAN device called an access point (AP). The AP uses wireless communications to send and receive frames with the WLAN clients (the laptops). The AP also connects to the same Ethernet LAN as the bookstore's own devices, allowing both customers and employees to communicate with other sites.

This section begins the chapter by explaining the basics of WLANs, starting with a comparison of similarities between Ethernet LANs and WLANs. The rest of the section then explores some of the main differences.

Comparisons with Ethernet LANs

WLANs are similar to Ethernet LANs in many ways, the most important being that WLANs allow communications to occur between devices. The IEEE defines standards for both, using the IEEE 802.3 family for Ethernet LANs and the 802.11 family for WLANs. Both standards define a frame format with a header and trailer, with the header including a source and destination MAC address field, each 6 bytes in length. Both define rules about how the devices should determine when they should send frames and when they should not.

The biggest difference between the two lies in the fact that WLANs use radiated energy waves, generally called radio waves, to transmit data, whereas Ethernet uses electrical signals flowing over a cable (or light on optical cabling). Radio waves pass through space, so technically there is no need for any physical transmission medium. In fact, the presence of matter—in particular, walls, metal objects, and other obstructions—gets in the way of the wireless radio signals.

Several other differences exist as well, mainly as a side effect of the use of wireless instead of wires. For example, Chapter 7, "Ethernet LAN Switching Concepts," explains how Ethernet can support full-duplex (FDX) communication if a switch connects to a single device rather than a hub. This removes the need to control access to the link using carrier sense multiple access collision detect (CSMA/CD). With wireless, if more than one device at a time sends radio waves in the same space at the same frequency, neither signal is intelligible, so a half-duplex (HDX) mechanism must be used. To arbitrate the use of the frequency, WLANs use the carrier sense multiple access with collision avoidance (CSMA/CA) algorithm to enforce HDX logic and avoid as many collisions as possible.

Wireless LAN Standards

At the time this book was published, the IEEE had ratified four major WLAN standards: 802.11, 802.11a, 802.11b, and 802.11g. This section lists the basic details of each WLAN standard, along with information about a couple of other standards bodies. This section also briefly mentions the emerging 802.1n standard, which the IEEE had not yet ratified by the time this book was published.

Four organizations have a great deal of impact on the standards used for wireless LANs today. Table 11-2 lists these organizations and describes their roles.

Table 11-2. Organizations That Set or Influence WLAN Standards

Organization

Standardization Role

ITU-R

Worldwide standardization of communications that use radiated energy, particularly managing the assignment of frequencies

IEEE

Standardization of wireless LANs (802.11)

Wi-Fi Alliance

An industry consortium that encourages interoperability of products that implement WLAN standards through their Wi-Fi certified program

Federal Communications Commission (FCC)

The U.S. government agency with that regulates the usage of various communications frequencies in the U.S.

Of the organizations listed in this table, the IEEE develops the specific standards for the different types of WLANs used today. Those standards must take into account the frequency choices made by the different worldwide regulatory agencies, such as the FCC in the U.S. and the ITU-R, which is ultimately controlled by the United Nations (UN).

The IEEE introduced WLAN standards with the creation of the 1997 ratification of the 802.11 standard. This original standard did not have a suffix letter, whereas later WLAN standards do. This naming logic, with no suffix letter in the first standard, followed by other standards with a suffix letter, is like the original IEEE Ethernet standard. That standard was 802.3, with later, more-advanced standards having a suffix, such as 802.3u for Fast Ethernet.

The original 802.11 standard has been replaced by more-advanced standards. In order of ratification, the standards are 802.11b, 802.11a, and 802.11g. Of note, the 802.11n standard is likely to be ratified by the end of 2008, with prestandard products available in 2007. Table 11-3 lists some key points about the currently ratified standards.

Table 11-3. WLAN Standards

Feature

802.11a

802.11b

802.11g

Year ratified

1999

1999

2003

Maximum speed using DSSS

11 Mbps

11 Mbps

Maximum speed using OFDM

54 Mbps

54 Mbps

Frequency band

5 GHz

2.4 GHz

2.4 GHz

Channels (nonoverlapped)*

23 (12)

11 (3)

11 (3)

Speeds required by standard (Mbps)

6, 12, 24

1, 2, 5.5, 11

6, 12, 24

This table lists a couple of features that have not yet been defined but that are described in this chapter.

Modes of 802.11 Wireless LANs

WLANs can use one of two modes—ad hoc mode or infrastructure mode. With ad hoc mode, a wireless device wants to communicate with only one or a few other devices directly, usually for a short period of time. In these cases, the devices send WLAN frames directly to each other, as shown in Figure 11-2.

Figure 11-2

Figure 11-2 Ad Hoc WLAN

In infrastructure mode, each device communicates with an AP, with the AP connecting via wired Ethernet to the rest of the network infrastructure. Infrastructure mode allows the WLAN devices to communicate with servers and the Internet in an existing wired network, as shown earlier in Figure 11-1.

Infrastructure mode supports two sets of services, called service sets. The first, called a Basic Service Set (BSS), uses a single AP to create the wireless LAN, as shown in Figure 11-1. The other, called Extended Service Set (ESS), uses more than one AP, often with overlapping cells to allow roaming in a larger area, as shown in Figure 11-3.

Figure 11-3

Figure 11-3 Infrastructure Mode BSS and ESS WLANs

The ESS WLANs allow roaming, which means that users can move around inside the coverage area and stay connected to the same WLAN. As a result, the user does not need to change IP addresses. All the device has to do is sense when the radio signals from the current AP are getting weaker; find a new, better AP with a stronger or better signal; and start using the new AP.

Table 11-4 summarizes the WLAN modes for easy reference.

Table 11-4. Different WLAN Modes and Names

Mode

Service Set Name

Description

Ad hoc

Independent Basic Service Set (IBSS)

Allows two devices to communicate directly. No AP is needed.

Infrastructure (one AP)

Basic Service Set (BSS)

A single wireless LAN created with an AP and all devices that associate with that AP.

Infrastructure (more than one AP)

Extended Service Set (ESS)

Multiple APs create one wireless LAN, allowing roaming and a larger coverage area.

Wireless Transmissions (Layer 1)

WLANs transmit data at Layer 1 by sending and receiving radio waves. The WLAN network interface cards (NIC), APs, and other WLAN devices use a radio and its antenna to send and receive the radio waves, making small changes to the waves to encode data. Although the details differ significantly compared to Ethernet, the idea of encoding data by changing the energy signal that flows over a medium is the same idea as Ethernet encoding.

Similar to electricity on copper wires and light over optical cables, WLAN radio waves have a repeating signal that can be graphed over time, as shown in Figure 11-4. When graphed, the curve shows a repeating periodic waveform, with a frequency (the number of times the waveform repeats per second), amplitude (the height of the waveform, representing signal strength), and phase (the particular point in the repeating waveform). Of these items, frequency, measured in hertz (Hz), is the most important in discussions of WLANs.

Figure 11-4

Figure 11-4 Graph of an 8-KHz Signal

Many electronic devices radiate energy at varying frequencies, some related to the device's purpose (for example, a wireless LAN or a cordless telephone). In other cases the radiated energy is a side effect. For example, televisions give off some radiated energy. To prevent the energy radiated by one device from interfering with other devices, national government agencies, regulate and oversee the frequency ranges that can be used inside that country. For example, the Federal Communications Commission (FCC) in the U.S. regulates the electromagnetic spectrum of frequencies.

The FCC or other national regulatory agencies specify some ranges of frequencies, called frequency bands. For example, in the U.S., FM and AM radio stations must register with the FCC to use a particular range (band) of frequencies. A radio station agrees to transmit its radio signal at or under a particular power level so that other radio stations in other cities can use the same frequency band. However, only that one radio station can use a particular frequency band in a particular location.

A frequency band is so named because it is actually a range of consecutive frequencies. An FM radio station needs about 200 kilohertz (KHz) of frequency in which to send a radio signal. When the station requests a frequency from the FCC, the FCC assigns a base frequency, with 100 KHz of bandwidth on either side of the base frequency. For example, an FM radio station that announces something like "The greatest hits are at 96.5 FM" means that the base signal is 96.5 megahertz (MHz), with the radio transmitter using the frequency band between 96.4 MHz and 96.6 MHz, for a total bandwidth of .2 MHz, or 200 KHz.

The wider the range of frequencies in a frequency band, the greater the amount of information that can be sent in that frequency band. For example, a radio signal needs about 200 KHz (.2 MHz) of bandwidth, whereas a broadcast TV signal, which contains a lot more information because of the video content, requires roughly 4.5 MHz.

The FCC, and equivalent agencies in other countries, license some frequency bands, leaving some frequency bands unlicensed. Licensed bands are used for many purposes; the most common are AM and FM radio, shortwave radio (for example, for police department communications), and mobile phones. Unlicensed frequencies can be used by all kinds of devices; however, the devices must still conform to the rules set up by the regulatory agency. In particular, a device using an unlicensed band must use power levels at or below a particular setting. Otherwise, the device might interfere too much with other devices sharing that unlicensed band. For example, microwave ovens happen to radiate energy in the 2.4 gigahertz (GHz) unlicensed band as a side effect of cooking food. That same unlicensed band is used by some WLAN standards and by many cordless telephones. In some cases, you cannot hear someone on the phone or surf the Internet using a WLAN when someone's heating up dinner.

The FCC defines three unlicensed frequency bands. The bands are referenced by a particular frequency in the band, although by definition, a frequency band is a range of frequencies. Table 11-5 lists the frequency bands that matter to some degree for WLAN communications.

Table 11-5. FCC Unlicensed Frequency Bands of Interest

Frequency Range

Name

Sample Devices

900 KHz

Industrial, Scientific, Mechanical (ISM)

Older cordless telephones

2.4 GHz

ISM

Newer cordless phones and 802.11, 802.11b, 802.11g WLANs

5 GHz

Unlicensed National Information Infrastructure (U-NII)

Newer cordless phones and 802.11a, 802.11n WLANs

Wireless Encoding and Nonoverlapping DSSS Channels

When a WLAN NIC or AP sends data, it can modulate (change) the radio signal's frequency, amplitude, and phase to encode a binary 0 or 1. The details of that encoding are beyond the scope of this book. However, it is important to know the names of three general classes of encoding, in part because the type of encoding requires some planning and forethought for some WLANs.

Frequency Hopping Spread Spectrum (FHSS) uses all frequencies in the band, hopping to different ones. By using slightly different frequencies for consecutive transmissions, a device can hopefully avoid interference from other devices that use the same unlicensed band, succeeding at sending data at some frequencies. The original 802.11 WLAN standards used FHSS, but the current standards (802.11a, 802.11b, and 802.11g) do not.

Direct Sequence Spread Spectrum (DSSS) followed as the next general class of encoding type for WLANs. Designed for use in the 2.4 GHz unlicensed band, DSSS uses one of several separate channels or frequencies. This band has a bandwidth of 82 MHz, with a range from 2.402 GHz to 2.483 GHz. As regulated by the FCC, this band can have 11 different overlapping DSSS channels, as shown in Figure 11-5.

Figure 11-5

Figure 11-5 Eleven Overlapping DSSS Channels at 2.4 GHz

Although many of the channels shown in the figure overlap, three of the channels (the channels at the far left and far right, and the channel in the center) do not overlap enough to impact each other. These channels (channels 1, 6, and 11) can be used in the same space for WLAN communications, and they won't interfere with each other.

The significance of the nonoverlapping DSSS channels is that when you design an ESS WLAN (more than one AP), APs with overlapping coverage areas should be set to use different nonoverlapping channels. Figure 11-6 shows the idea.

Figure 11-6

Figure 11-6 Using Nonoverlapping DSSS 2.4-GHz Channels in an ESS WLAN

In this design, the devices in one BSS (devices communicating through one AP) can send at the same time as the other two BSSs and not interfere with each other, because each uses the slightly different frequencies of the nonoverlapping channels. For example, PC1 and PC2 could sit beside each other and communicate with two different APs using two different channels at the exact same time. This design is typical of 802.11b WLANs, with each cell running at a maximum data rate of 11 Mbps. With the nonoverlapping channels, each half-duplex BSS can run at 11 Mbps, for a cumulative bandwidth of 33 Mbps in this case. This cumulative bandwidth is called the WAN's capacity.

The last of the three categories of encoding for WLANs is called Orthogonal Frequency Division Multiplexing (OFDM). Like DSSS, WLANs that use OFDM can use multiple nonoverlapping channels. Table 11-6 summarizes the key points and names of the main three options for encoding.

Table 11-6. Encoding Classes and IEEE Standard WLANs

Name of Encoding Class

What It Is Used By

Frequency Hopping Spread Spectrum (FHSS)

802.11

Direct Sequence Spread Spectrum (DSSS)

802.11b

Orthogonal Frequency Division Multiplexing (OFDM)

802.11a, 802.11g

Wireless Interference

WLANs can suffer from interference from many sources. The radio waves travel through space, but they must pass through whatever matter exists inside the coverage area, including walls, floors, and ceilings. Passing through matter causes the signal to be partially absorbed, which reduces signal strength and the size of the coverage area. Matter can also reflect and scatter the waves, particularly if there is a lot of metal in the materials, which can cause dead spots (areas in which the WLAN simply does not work), and a smaller coverage area.

Additionally, wireless communication is impacted by other radio waves in the same frequency range. The effect is the same as trying to listen to a radio station when you're taking a long road trip. You might get a good clear signal for a while, but eventually you drive far enough from the radio station's antenna that the signal is weak, and it is hard to hear the station. Eventually, you get close enough to the next city's radio station that uses the same frequency range, and you cannot hear either station well because of the interference. With WLANs, the interference may simply mean that the data only occasionally makes it through the air, requiring lots of retransmissions, and resulting in poor efficiency.

One key measurement for interference is the Signal-to-Noise Ratio (SNR). This calculation measures the WLAN signal as compared to the other undesired signals (noise) in the same space. The higher the SNR, the better the WLAN devices can send data successfully.

Coverage Area, Speed, and Capacity

A WLAN coverage area is the space in which two WLAN devices can successfully send data. The coverage area created by a particular AP depends on many factors, several of which are explained in this section.

First, the transmit power by an AP or WLAN NIC cannot exceed a particular level based on the regulations from regulatory agencies such as the FCC. The FCC limits the transmit power to ensure fairness in the unlicensed bands. For example, if two neighbors bought Linksys APs and put them in their homes to create a WLAN, the products would conform to FCC regulations. However, if one person bought and installed high-gain antennas for her AP, and greatly exceeded the FCC regulations, she might get a much wider coverage area—maybe even across the whole neighborhood. However, it might prevent the other person's AP from working at all because of the interference from the overpowered AP.

The materials and locations of the materials near the AP also impact an AP's coverage area. For example, putting the AP near a large metal filing cabinet increases reflections and scattering, which shrinks the coverage area. Certainly, concrete construction with steel rebar reduces the coverage area in a typical modern office building. In fact, when a building's design means that interference will occur in some areas, APs may use different types of antennas that change the shape of the coverage area from a circle to some other shape.

As it turns out, weaker wireless signals cannot pass data at higher speeds, but they can pass data at lower speeds. So, WLAN standards support the idea of multiple speeds. A device near the AP may have a strong signal, so it can transmit and receive data with the AP at higher rates. A device at the edge of the coverage area, where the signals are weak, may still be able to send and receive data—although at a slower speed. Figure 11-7 shows the idea of a coverage area, with varying speeds, for an IEEE 802.11b BSS.

Figure 11-7

Figure 11-7 Coverage Area and Speed

The main ways to increase the size of the coverage area of one AP are to use specialized antennas and to increase the power of the transmitted signal. For example, you can increase the antenna gain, which is the power added to the radio signal by the antenna. To double the coverage area, the antenna gain must be increased to quadruple the original gain. Although this is useful, the power output (the EIRP) must still be within FCC rules (in the U.S.).

The actual size of the coverage area depends on a large number of factors that are beyond the scope of this book. Some of the factors include the frequency band used by the WLAN standard, the obstructions between and near the WLAN devices, the interference from other sources of RF energy, the antennas used on both the clients and APs, and the options used by DSSS and OFDM when encoding data over the air. Generally speaking, WLAN standards that use higher frequencies (U-NII band standards 802.11a and the future 802.11n) can send data faster, but with the price of smaller coverage areas. To cover all the required space, an ESS that uses higher frequencies would then require more APs, driving up the cost of the WLAN deployment.

Table 11-7 lists the main IEEE WLAN standards that had been ratified at the time this book was published, the maximum speed, and the number of nonoverlapping channels.

Table 11-7. WLAN Speed and Frequency Reference

IEEE Standard

Maximum Speed (Mbps)

Other Speeds* (Mbps)

Frequency

Nonoverlapping Channels

802.11b

11 Mbps

1, 2, 5.5

2.4 GHz

3

802.11a

54 Mbps

6, 9, 12, 18, 24, 36, 48

5 GHz

12

802.11g

54 Mbps

Same as 802.11a

2.4 GHz

3

Finally, note that the number of (mostly) nonoverlapping channels supported by a standard, as shown in Figures 11-5 and 11-6, affects the combined available bandwidth. For example, in a WLAN that exclusively uses 802.11g, the actual transmissions could occur at 54 Mbps. But three devices could sit beside each other and send at the same time, using three different channels, to three different APs. Theoretically, that WLAN could support a throughput of 3 * 54 Mbps, or 162 Mbps, for these devices in that part of the WLAN. Along the same line of reasoning, an 802.11a WLAN can transmit data at 54 Mbps, but with 12 nonoverlapping channels, for a theoretical maximum of 12 * 54 Mbps = 648 Mbps of bandwidth capacity.

Media Access (Layer 2)

Ethernet LANs began life using a shared medium (a coaxial cable), meaning that only one device could send data at a time. To control access to this half-duplex (HDX) medium, Ethernet defined the use of the CSMA/CD algorithm. As Ethernet progressed with continually improved standards, it started using switches, with one device cabled to each switch port, allowing the use of full duplex (FDX). With FDX, no collisions can occur, so the CSMA/CD algorithm is disabled.

With wireless communications, devices cannot be separated onto different cable segments to prevent collisions, so collisions can always occur, even with more-advanced WLAN standards. In short, if two or more WLAN devices send at the same time, using overlapping frequency ranges, a collision occurs, and none of the transmitted signals can be understood by those receiving the signal. To make matters worse, the device that is transmitting data cannot concurrently listen for received data. So, when two WLAN devices send at the same time, creating a collision, the sending devices do not have any direct way to know the collision occurred.

The solution to the media access problem with WLANs is to use the carrier sense multiple access with collision avoidance (CSMA/CA) algorithm. The collision avoidance part minimizes the statistical chance that collisions could occur. However, CSMA/CA does not prevent collisions, so the WLAN standards must have a process to deal with collisions when they do occur. Because the sending device cannot tell if its transmitted frame collided with another frame, the standards all require an acknowledgment of every frame. Each WLAN device listens for the acknowledgment, which should occur immediately after the frame is sent. If no acknowledgment is received, the sending device assumes that the frame was lost or collided, and it resends the frame.

The following list summarizes the key points about the CSMA/CA algorithm, omitting some of the details for the sake of clarity:

  • Step 1 Listen to ensure that the medium (space) is not busy (no radio waves currently are being received at the frequencies to be used).
  • Step 2 Set a random wait timer before sending a frame to statistically reduce the chance of devices all trying to send at the same time.
  • Step 3 When the random timer has passed, listen again to ensure that the medium is not busy. If it isn't, send the frame.
  • Step 4 After the entire frame has been sent, wait for an acknowledgment.
  • Step 5 If no acknowledgment is received, resend the frame, using CSMA/CA logic to wait for the appropriate time to send again.

This concludes the brief introduction to wireless LAN concepts. Next, this chapter covers the basics of what you should do when installing a new wireless LAN.

4. Deploying WLANs | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020