Home > Articles > Cisco Networking Academy > CCNP 1: Advanced IP Addressing Management

CCNP 1: Advanced IP Addressing Management

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Aug 27, 2004.

Chapter Description

This guide from Cisco Press explains the ins and outs of IP management, including how to resolve IP addressing crises, and how and when to use helper addresses.

IPv6

IPv6 is an alternative and a solution to the IPv4 address crisis. This section explains what IPv6 is and describes its address structure.

IP Address Issues Solutions

This chapter has shown that IPv4 addressing faces two major issues:

  • The depletion of addresses, particularly the key medium-sized space

  • The pervasive growth of Internet routing tables, which is illustrated in Figure 2-23

Figure 23Figure 2-23 Growth of Routing Tables

 

In the early 1990s, CIDR ingeniously built on the concept of the address mask and stepped forward to temporarily alleviate these overwhelming problems. CIDR's hierarchical nature dramatically improved IPv4's scalability. Once again, a hierarchical design has proven to be a scalable one.

Yet even with subnetting in 1985, variable-length subnetting in 1987, and CIDR in 1993, a hierarchical structure could not save IPv4 from one simple problem: not enough addresses exist to meet future needs. At roughly four billion possibilities, the IPv4 address space is formidable. However, it will not suffice in a future world of mobile Internet-enabled devices and IP-addressable household appliances.

Recent short-term IPv4 solutions to the address crunch have been developed. These include RFC 1918, which sets aside private addresses for unlimited internal use, and NAT, which allows thousands of hosts to access the Internet with only a handful of valid addresses.

However, the ultimate solution to the address shortage is the introduction of IPv6 and its 128-bit address. Developed to create a supply of addresses that would outlive demand, IPv6 is on course to eventually replace IPv4. IPv6's large address space will provide not only far more addresses than IPv4, but additional levels of hierarchy as well.

In 1994, the IETF proposed IPv6 in RFC 1752, and a number of working groups were formed in response. IPv6 covers issues such as the following:

  • Address depletion

  • Quality of service

  • Address autoconfiguration

  • Authentication

  • Security

It will not be easy for organizations deeply invested in the IPv4 scheme to migrate to a totally new architecture. As long as IPv4, with its recent extensions and CIDR-enabled hierarchy, remains viable, administrators will shy away from adopting IPv6. A new IP protocol requires new software, new hardware, and new methods of administration. It is likely that IPv4 and IPv6 will coexist, even within an autonomous system, for years.

IPv6 Address Format

As defined in RFC 1884 and later revised in RFC 2373, IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces, not nodes. Three general types of addresses exist:

  • Unicast—An identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address.

  • Anycast—An identifier for a set of interfaces that typically belong to different nodes. A packet sent to an anycast address is delivered to the nearest interface in the anycast group.

  • Multicast—An identifier for a set of interfaces that typically belong to different nodes. A packet sent to a multicast address is delivered to all interfaces in the multicast group.

To write 128-bit addresses so that they are more readable to human eyes, the IPv6 architects abandoned dotted-decimal notation in favor of a hexadecimal format. Therefore, IPv6 is written as 32-hex digits, with colons separating the values of the eight 16-bit pieces of the address.

IPv6 addresses are written in hexadecimal:

1080:0000:0000:0000:0008:0800:200C:417A

Leading 0s in each 16-bit value can be omitted, so this address can be expressed as follows:

1080:0:0:0:8:800:200C:417A

Because IPv6 addresses, especially in the early implementation phase, might contain consecutive 16-bit values of 0, one such string of 0s per address can be omitted and replaced by a double colon. As a result, this address can be shortened as follows:

1080::8:800:200C:417A

Under current plans, IPv6 nodes that connect to the Internet will use what is called an aggregatable global unicast address. This is the familiar counterpart to the IPv4 global addresses. Like CIDR-enhanced IPv4, aggregatable global unicast addresses rely on hierarchy to keep Internet routing tables manageable. IPv6 global unicast addresses feature three levels of hierarchy:

  • Public topology—The collection of providers that offer Internet connectivity.

  • Site topology—The level local to an organization that does not provide connectivity to nodes outside itself.

  • Interface identifier—The level specific to a node's individual interface.

This three-level hierarchy is reflected by the structure of the aggregatable global unicast address (see Figure 2-24), which includes the following fields:

  • Format Prefix (FP) field, 3 bits—The 3-bit FP is used to identify the type of address—unicast, multicast, and so on. The bits 001 identify aggregatable global unicasts.

  • Top-Level Aggregation Identifier (TLA ID) field, 13 bits—The TLA ID field is used to identify the authority responsible for the address at the highest level of the routing hierarchy. Internet routers necessarily maintain routes to all TLA IDs. With 13 bits set aside, this field can represent up to 8192 TLAs.

  • Reserved (Res) field, 8 bits—IPv6 architecture defined the Res field so that the TLA or NLA IDs could be expanded as future growth warrants. Currently, this field must be set to 0.

  • Next-Level Aggregation Identifier (NLA ID) field, 24 bits—The NLA ID field is used by organizations assigned a TLA ID to create an addressing hierarchy and to identify sites.

  • Site-Level Aggregation Identifier (SLA ID) field, 16 bits—The SLA ID is used by an individual organization to create its own local addressing hierarchy and to identify subnets.

  • Interface ID field, 64 bits—The Interface ID field is used to identify individual interfaces on a link. This field is analogous to the host portion of an IPv4 address, but it is derived using the IEEE EUI-64 format. When this field is on LAN interfaces, the Interface ID adds a 16-bit field to the interface MAC address.

Figure 24Figure 2-24 IPv6 Address Format

 

In addition to the global unicast address space, IPv6 offers internal network numbers, or site local use addresses. These are analogous to RFC 1918 addresses. If a node is not normally addressed with a global unicast address or an internal site local use address, it can be addressed using a link local use address, which is specific to a network segment.

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020