Home > Articles > Cisco Network Technology > IP Communications/VoIP > Multiprotocol Label Switching Traffic Engineering Technology Overview

Multiprotocol Label Switching Traffic Engineering Technology Overview

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Sep 22, 2006.

Contents

  1. MPLS TE Introduction
  2. Basic Operation of MPLS TE
  3. DiffServ-Aware Traffic Engineering
  4. Fast Reroute
  5. Summary
  6. References

Chapter Description

This chapter presents a review of Multiprotocol Label Switching Traffic Engineering (MPLS TE) technology. MPLS TE can play an important role in the implementation of network services with quality of service (QoS) guarantees.

From the Book

QoS for IP/MPLS Networks

QoS for IP/MPLS Networks

$55.00

DiffServ-Aware Traffic Engineering

MPLS DS-TE enables per-class TE across an MPLS network. DS-TE provides more granular control to minimize network congestion and improve network performance. DS-TE retains the same overall operation framework of MPLS TE (link information distribution, path computation, signaling, and traffic selection). However, it introduces extensions to support the concept of multiple classes and to make per-class constraint-based routing possible. These routing enhancements help control the proportion of traffic of different classes on network links. RFC 4124 introduces DS-TE protocol extensions.

Both DS-TE and DiffServ control the per-class bandwidth allocation on network links. DS-TE acts as a control-plane mechanism, while DiffServ acts in the forwarding plane. In general, the configuration in both planes will have a close relationship. However, they do not have to be identical. They can use a different number of classes and different relative bandwidth allocations to satisfy the requirements of particular network designs. Figure 2-5 shows an example of bandwidth allocation in DiffServ and DS-TE for a particular link. In this case, the link rate equals the maximum reservable bandwidth for TE. Each class receives a fraction of the total bandwidth amount in the control and forwarding planes. However, the bandwidth proportions between classes differ slightly in this case.

qm880205.gif

Figure 2-5 Bandwidth Allocation in DiffServ and DS-TE

Class-Types and TE-Classes

DS-TE uses the concept of Class-Type (CT) for the purposes of link bandwidth allocation, constraint-based routing, and admission control. A network can use up to eight CTs (CT0 through CT7). DS-TE retains support for TE LSP preemption, which can operate within a CT or across CTs. TE LSPs can have different preemption priorities regardless of their CT. CTs represent the concept of a class for DS-TE in a similar way that per-hop behavior (PHB) scheduling class (PSC) represents it for DiffServ. Note that flexible mappings between CTs and PSCs are possible. You can define a one-to-one mapping between CTs and PSCs. Alternatively, a CT can map to several PSCs, or several CTs can map to one PSC.

DS-TE provides flexible definition of preemption priorities while retaining the same mechanism for distribution of unreserved bandwidth on network links. DS-TE redefines the meaning of the unreserved bandwidth attribute discussed in the section "Link Information Distribution" without modifying its format. When DS-TE is in use, this attribute represents the unreserved bandwidth for eight TE classes. A TE-Class defines a combination of a CT and a corresponding preemption priority value. A network can use any 8 (TE-Class) combinations to use out of 64 possible combinations (8 CTs times 8 priorities). No relative ordering exists between the TE-Classes, and a network can use a subset of the 8 possible values. However, the TE-Class definitions must be consistent across the DS-TE network.

Tables 2-3, 2-4, and 2-5 include examples of three different TE-Class definitions:

Table 2-3. TE-Class Definition Backward Compatible with Aggregate MPLS TE

TE-Class

CT

Priority

0

0

0

1

0

1

2

0

2

3

0

3

4

0

4

5

0

5

6

0

6

7

0

7

Table 2-4. TE-Class Definition with Four CTs and 8 Preemption Priorities

TE Class

Class Type

Priority

0

0

7

1

0

6

2

1

5

3

1

4

4

2

3

5

2

2

6

3

1

7

3

0

Table 2-5. TE-Class Definition with Two CTs and Two Preemption Priorities

TE-Class

CT

Priority

0

0

7

1

1

7

2

Unused

Unused

3

Unused

Unused

4

0

0

5

1

0

6

Unused

Unused

7

Unused

Unused

  • Table 2-3 illustrates a TE-Class definition that is backward compatible with aggregate MPLS TE. In this example, all TE-Classes support only CT0, with 8 different preemption priorities ranging from 0 through 7.
  • Table 2-4 presents a second example where the TE-Class definition uses 4 CTs (CT0, CT1, CT2, and CT3), with 8 preemption priority levels (0 and 7) for each CT. This definition makes preemption possible within CTs but not across CTs.
  • Table 2-5 contains a TE-Class definition with 2 CTs (CT0 and CT1) and 2 preemption priority levels (0 and 7). 2 third example defines some TE-Classes as unused In this case, preemption is possible within and across CTs. With this design, preemption is possible within and across CTs, but you can signal CT1 TE LSPs (using priority zero) that no other TE LSP can preempt.

DS-TE introduces a new CLASSTYPE RSVP object. This object specifies the CT associated with the TE LSP and can take a value ranging form one to seven. DS-TE nodes must support this new object and include it in Path messages, with the exception of CT0 TE LSPs. The Path messages associated with those LSPs must not use the CLASSTYPE object to allow non-DS-TE nodes to interoperate with DS-TE nodes. Table 2-6 summarizes the CLASSTYPE object.

Table 2-6. TE-Class Definition with Two CTs and Eight Preemption Priorities

TE-Class

CT

Priority

0

0

7

1

1

6

2

0

5

3

1

4

4

0

3

5

1

2

6

0

1

7

1

0

Table 2-7. New RSVP Object for DS-TE

RSVP Object

RSVP Message

FRR Function

CLASSTYPE

Path

CT associated with the TE LSP. Not used for CT0 for backward compatibility with non-DS-TE nodes.

Bandwidth Constraints

A set of bandwidth constraints (BC) defines the rules that a node uses to allocate bandwidth to different CTs. Each link in the DS-TE network has a set of BCs that applies to the CTs in use. This set may contain up to eight BCs. When a node using DS-TE admits a new TE LSP on a link, that node uses the BC rules to update the amount of unreserved bandwidth for each TE-Class. One or more BCs may apply to a CT depending on the model.

DS-TE can support different BC models. The IETF has primarily defined two BC models: maximum allocation model (MAM) and Russian dolls model (RDM). These are discussed in the following subsections of this chapter.

DS-TE also defines a BC extension for IGP link advertisements. This extension complements the link attributes that Table 2-1 already described and applies equally to OSPF and IS-IS. Network nodes do not need this BC information to perform path computation. They rely on the unreserved bandwidth information for that purpose. However, they can optionally use it to verify DS-TE configuration consistency throughout the network or as a path computation heuristic (for instance, as a tie breaker for CSPF). A DS-TE deployment could use different BC models throughout the network. However, the simultaneous use of different models increases operational complexity and can adversely impact bandwidth optimization. Table 2-8 summarizes the BC link attribute that DS-TE uses.

Table 2-8. Optional BC Link Attribute Distributed for DS-TE

Link Attribute

Description

BCs

BC model ID and BCs (BC0 through BC n) that the link uses for DS-TE

Maximum Allocation Model

The MAM defines a one-to-one relationship between BCs and Class-Types. BC n defines the maximum amount of reservable bandwidth for CT n, as Table 2-9 shows. The use of preemption does not affect the amount of bandwidth that a CT receives. MAM offers limited bandwidth sharing between CTs. A CT cannot make use of the bandwidth left unused by another CT. The packet schedulers managing congestion in the forwarding plane typically guarantee bandwidth sharing. To improve bandwidth sharing using MAM, you may make the sum of all BCs greater than the maximum reservable bandwidth. However, the total reserved bandwidth for all CTs cannot exceed the maximum reservable bandwidth at any time. RFC 4125 defines MAM.

Table 2-9. MAM Bandwidth Constraints for Eight CTs

Bandwidth Constraint

Maximum Bandwidth Allocation For

BC7

CT7

BC6

CT6

BC5

CT5

BC4

CT4

BC3

CT3

BC2

CT2

BC1

CT1

BC0

CT0

Figure 2-6 shows an example of a set of BCs using MAM. This DS-TE configuration uses three CTs with their corresponding BCs. In this case, BC0 limits CT0 bandwidth to 15 percent of the maximum reservable bandwidth. BC1 limits CT1 to 50 percent, and BC2 limits CT2 to 10 percent. The sum of BCs on this link is less than its maximum reservable bandwidth. Each CT will always receive its bandwidth share without the need for preemption. Preemption will not have an effect on the bandwidth that a CT can use. This predictability comes at the cost of no bandwidth sharing between CTs. The lack of bandwidth sharing can force some TE LSPs to follow longer paths than necessary.

qm880206.gif

Figure 2-6 MAM Constraint Model Example

Russian Dolls Model

The RDM defines a cumulative set of constraints that group CTs. For an implementation with n CTs, BC n always defines the maximum bandwidth allocation for CT n. Subsequent lower BCs define the total bandwidth allocation for the CTs at equal or higher levels. BC0 always defines the maximum bandwidth allocation across all CTs and is equal to the maximum reservable bandwidth of the link.

Table 2-10 shows the RDM BCs for a DS-TE implementation with eight CTs. The recursive definition of BCs improves bandwidth sharing between CTs. A particular CT can benefit from bandwidth left unused by higher CTs. A DS-TE network using RDM can rely on TE LSP preemption to guarantee that each CT gets a fair share of the bandwidth. RFC 4127 defines RDM.

Table 2-10. RDM Bandwidth Constrains for Eight CTs

Bandwidth Constraint

Maximum Bandwidth Allocation For

BC7

CT7

BC6

CT7+CT6

BC5

CT7+CT6+CT5

BC4

CT7+CT6+CT5+CT4

BC3

CT7+CT6+CT5+CT4+CT3

BC2

CT7+CT6+CT5+CT4+CT3+CT2

BC1

CT7+CT6+CT5+CT4+CT3+CT2+CT1

BC0 = Maximum reservable bandwidth

CT7+CT6+CT5+CT4+CT3+CT2+CT1+CT0

Figure 2-7 shows an example of a set of BCs using RDM. This DS-TE implementation uses three CTs with their corresponding BCs. In this case, BC2 limits CT2 to 30 percent of the maximum reservable bandwidth. BC1 limits CT2+CT1 to 70 percent. BC0 limits CT2+CT1+CT0 to 100 percent of the maximum reservable bandwidth, as is always the case with RDM. CT0 can use up to 100 percent of the bandwidth in the absence of CT2 and CT1 TE LSPs. Similarly, CT1 can use up to 70 percent of the bandwidth in the absence of TE LSPs of the other two CTs. CT2 will always be limited to 30 percent when no CT0 or CT1 TE LSPs exist. The maximum bandwidth that a CT receives on a particular link depends on the previously signaled TE LSPs, their CTs, and the preemption priorities of all TE LSPs. Table 2-11 compares MAM and RDM.

qm880207.gif

Figure 2-7 RDM Constraint Model Example

Table 2-11. Comparing MAM and RDM BC Models

MAM

RDM

1 BC per CT.

1 or more CTs per BC.

Sum of all BCs may exceed maximum reservable bandwidth.

BC0 always equals the maximum reservable bandwidth.

Preemption not required to provide bandwidth guarantees per CT.

Preemption required to provide bandwidth guarantees per CT.

Bandwidth efficiency and protection against QoS degradation are mutually exclusive.

Provides bandwidth efficiency and protection against QoS degradation simultaneously.

4. Fast Reroute | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020