WDM Network Design

  • Sample Chapter is provided courtesy of Cisco Press.
  • Date: Feb 7, 2003.

Factors That Affect System Design

Initially, fiber loss was considered the biggest factor in limiting the length of an optical channel. However, as data rates grew and pulses occupied lesser and lesser time slots, group velocity dispersion and nonlinearities (SPM, XPM, and FWM) became important considerations.

As we will see in the following sections, an optical link is designed by taking into account a figure of merit, which is generally the bit error rate (BER) of the system. For most practical WDM networks, this requirement of BER is 10-12 (~ 10-9 to 10-12), which means that a maximum one out of every 1012 bits can be corrupted during transmission. Therefore, BER is considered an important figure of merit for WDM networks; all designs are based to adhere to that quality.

In Chapter 2, we saw the analytical explanation behind BER. It showed BER to be a ratio of the difference of high and low bit levels (power) to the difference in standard deviation of high and low bit levels. As can be observed it is quite difficult to calculate BER instantaneously.

Another plausible explanation of BER can be considered as follows. For a photodetector to detect a 1 bit correctly (assuming nonreturn-to-zero/return-to-zero, or NRZ/RZ modulation; see Chapter 2), it needs a certain minimum number of photons (Np) falling on it. If NTP is the number of photons launched at the transmitter and Δp is the number of photons lost (hypothetically) due to attenuation, absorption, scattering, and other impairments during transmission, then if NTP - Δp < Np, the receiver will not be able to decode the signals properly. To sustain good communication, it is imperative that NTP – Δp > Np over 'L' the desired length of transmission channel. The number of photons translates to the power (which is a function of intensity) of the optical signal.

From the explanation, it becomes evident why optical system design considers power budget and power margins (safety margins for good design) so important.

As far as the dispersion issue goes, we know that dispersion is the spreading of a pulse in time domain, generally due to the large variance of the spectral domain. (Many different spectral components exist in a pulse, each travelling at a different speed.) That means dispersion causes pulse spreading.

The most harmful effect of this pulse spreading is ISI. Even if you assume ISI never to happen (due to good design), still a small amount of dispersion has several harmful effects. The spreading of a pulse lowers its power content, which means that Δp increases. In other words, the number of photons that will strike the photodetector decreases. Therefore, when we are considering dispersion-limited systems, we must consider a power penalty due to dispersion. This power penalty3 can qualitatively be defined as the net loss in power because of dispersion during transmission of a signal in a dispersion affected/limited system.

Qualitatively, power penalty can also be considered as the net extra power required to pump up the signal so that it reaches the receiver (photodetector) while maintaining the minimum BER requirement of the system. Typically, the power penalty for most networks is in the range of 2–3 dB. ITU specification G957 states that this penalty should not be greater than 2 dB.

Long-Haul Impairments: Nonlinearity

By placing optical amplifiers, we can greatly enhance the power of an optical signal as it reaches the photodetector. Yet another system design consideration is the net fiber nonlinearity that is present in silica fibers. The intensity of the electromagnetic wave propagating through a fiber gives rise to nonlinearities. The refractive index has a strong nonlinear component that depends on the power level of the signal. Nonlinearity produces a nonlinear phase shift denoted by φNL. This is shown in Equation 4-3.

Equation 4-3

In Equation 4-3, is the nonlinear coefficient that is denoted by Equation 4-4.

Equation 4-4

In Equation 4-4, n2 is the cladding index, and Aeff is the area of cross-section of the core. Further φNL being dependent of Pin such that Pin by itself is a time varying response. Therefore, the nonlinear phase shift induced in a fast-moving optical pulse is quite dynamic.

The implication is that a frequency chirp is associated with this phase shift. In other words, a pulse at frequency ω0 would, in time, have components in the frequency range shown in the next equation.

ω0 ± φNL

In the equation, φNL is dynamic. The result is pulse spreading, which is a result of the power dependence on the induced phase shift. Therefore, to keep a check on the maximum phase shift that a pulse can have, it is imperative to set a threshold to the maximum input power. This nonlinear phase shift is Self Phase Modulation (SPM). In optical communication, lightpaths need to be designed, keeping in mind the maximum tolerable phase shift φNL < 1. Therefore, the maximum power [Pin max | φNL < 1] can limit phase shift to less than the system requirement.

SPM does not act alone. In optical communication, GVD and SPM often go hand in hand, acting quasi-simultaneously over a length of the fiber. The input channel power needs to be optimized so that it ensures a net dispersion (at a given bit rate) that is less than the minimum tolerable dispersion, as well as for which the net nonlinear effects are under control. In other words, a tradeoff is involved: We need some more power to take care of the dispersion-induced power penalty, but this additional power leads to fiber nonlinear effects (such as SPM), which creates more spread.

An optimization technique involves simulation, whereby we can correctly design the network by considering all the affecting factors and using the appropriate entities to com-pensate for these factors. In one method, SPM and GVD are both calculated on a split Fourier transform. Using this method, frequency domain analysis of the two effects is accomplished by breaking the cylindrical waveguide (fiber) into infinitesimal overlapping segments, such that SPM is assumed to act on odd segments and GVD is set to act on even segments. The final sum of effects on the last and penultimate segments gives the net impairment in the system.

So far, nonlinearities have been considered on just one channel. What happens when we have a WDM system? Do parallel channels have an effect on each other? Two or more channels have nonlinear effects on each other: XPM and FWM. Cross phase modulation results from the different carrier frequency of independent channels, including the associated phase shifts on one another. Cross phase modulation is severely harmful and is twice as powerful as Self phase modulation. The induced phase shift is due to the "walkover" effect, whereby two pulses at different bit rates or with different group velocities walk across each other. The slower pulse sees the walkover and induces a phase shift because of this walkover effect. The total phase shift depends on the net power of all the channels and on the bit output of the channels. Maximum phase shift is produced when two 1 bits walk across each other due to the high power in both the bits (as opposed to the lower power levels when both bits are not at logical 1).

Mathematically, the phase shift is shown in Equation 4-5.

Equation 4-5

In Equation 4-5, w is the total number of channels and Pk is the power of the kth channel. The maximum phase shift (for all 1 bits) is shown in Equation 4-6.

Equation 4-6

NOTE

Another method is to solve Schröinger's nonlinear propagation equation shown in the next equation.

3. Effect of Chromatic Dispersion on Transmission Length and Induced Power Penalty | Next Section Previous Section

Cisco Press Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Cisco Press and its family of brands. I can unsubscribe at any time.

Overview

Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Cisco Press products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@ciscopress.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security

Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children

This site is not directed to children under the age of 13.

Marketing

Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out

Users can always make an informed choice as to whether they should proceed with certain services offered by Cisco Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.ciscopress.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links

This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020