Designing Cisco Network Service Architectures (ARCH) Foundation Learning Guide: (CCDP ARCH 642-874), 3rd Edition
- By John Tiso
- Published Nov 1, 2011 by Cisco Press.
Book
- Sorry, this book is no longer in print.
- Copyright 2012
- Dimensions: 7-3/8" x 9-1/8"
- Pages: 736
- Edition: 3rd
- Book
- ISBN-10: 1-58714-288-0
- ISBN-13: 978-1-58714-288-8
Designing Cisco Network Service Architectures (ARCH) Foundation Learning Guide, Third Edition, is a Cisco®-authorized, self-paced learning tool for CCDP® foundation learning. This book provides you with the knowledge needed to perform the conceptual, intermediate, and detailed design of a network infrastructure that supports desired network solutions over intelligent network services, in order to achieve effective performance, scalability, and availability. By reading this book, you will gain a thorough understanding of how to apply solid Cisco network solution models and recommended design practices to provide viable, stable enterprise internetworking solutions. The book presents concepts and examples that are necessary to design converged enterprise networks. Advanced network infrastructure technologies, such as virtual private networks (VPNs) and other security solutions are also covered.
Designing Cisco Network Service Architectures (ARCH) Foundation Learning Guide, Third Edition teaches you the latest development in network design and technologies, including network infrastructure, intelligent network services, and converged network solutions. Specific topics include campus, routing, addressing, WAN services, data center, e-commerce, SAN, security, VPN, and IP multicast design, as well as network management. Chapter-ending review questions illustrate and help solidify the concepts presented in the book.
Whether you are preparing for CCDP certification or simply want to gain a better understanding of designing scalable and reliable network architectures, you will benefit from the foundation information presented in this book.
Designing Cisco Network Service Architectures (ARCH) Foundation Learning Guide, Third Edition, is part of a recommended learning path from Cisco that includes simulation and hands-on training from authorized Cisco Learning Partners and self-study products from Cisco Press. To find out more about instructor-led training, e-learning, and hands-on instruction offered by authorized Cisco Learning Partners worldwide, please visit www.cisco.com/go/authorizedtraining.
John Tiso, CCIE No. 5162, CCDP is a Product Manager for Cisco Systems. He holds a B.S. Degree in Computer Science and Mathematics from Adelphi University and a Graduate Citation in Strategic Management from Harvard University. John is a published author, has served as a technical editor for Cisco Press, and has participated as a SME for the CCIE program. Prior to Cisco, he was a senior consultant and architect in the Cisco partner channel.
· Learn about the Cisco Enterprise Architecture
· Create highly available campus and data center network designs
· Develop optimum Layer 3 designs
· Examine advanced WAN services design considerations
· Evaluate SAN design considerations
· Deploy effective e-commerce module designs
· Create effective security services and IPsec and SSL VPN designs
· Design IP multicast networks
· Understand the network management capabilities within Cisco IOS Software
This book is in the Foundation Learning Guide Series. These guides are developed together with Cisco® as the only authorized, self-paced learning tools that help networking professionals build their understanding of networking concepts and prepare for Cisco certification exams.
Category: Cisco Certification
Covers: CCDP ARCH 642-874
Online Sample Chapter
Sample Pages
Download the sample pages (includes Chapter 3 and Index)
Table of Contents
Foreword xxx
Introduction xxxi
Chapter 1 The Cisco Enterprise Architecture 1
Reviewing Cisco Enterprise Architecture 1
The Hierarchical Model 2
Example Hierarchical Network 3
Enterprise Network Design for Cisco Architectures 4
Service and Application Integration 7
Network Services 7
Network Applications 9
Modularity in Cisco Network Architectures for the Enterprise 9
Reviewing the Cisco PPDIOO Approach 12
PPDIOO Network Lifecycle Approach 13
Benefits of the Lifecycle Approach 14
Using the Design Methodology Under PPDIOO 16
Identifying Customer Requirements 16
Characterizing the Existing Network and Sites 17
Designing the Topology and Network Solutions 18
Dividing the Network into Areas 18
Summary 20
References 21
Review Questions 21
Chapter 2 Enterprise Campus Network Design 23
Designing High Availability in the Enterprise Campus 24
Enterprise Campus Infrastructure Review 24
Access Layer 24
Distribution Layer 26
Core Layer 27
Collapsed-Core Model 29
High-Availability Considerations 30
Implement Optimal Redundancy 30
Provide Alternate Paths 32
Avoid Single Points of Failure 33
Cisco NSF with SSO 33
Routing Protocol Requirements for Cisco NSF 34
Cisco IOS Software Modularity Architecture 35
Example: Software Modularity Benefits 37
Designing an Optimum Design for Layer 2 38
Recommended Practices for Spanning-Tree Configuration 38
Cisco STP Toolkit 40
STP Standards and Features 40
Recommended Practices for STP Hardening 41
Recommended Practices for Trunk Configuration and Vlan Trunking Protocol 43
Dynamic Trunking Protocol 45
Recommended Practices for UDLD Configuration 46
Recommended Practices for EtherChannel 47
Port Aggregation Protocol 49
Link Aggregation Control Protocol 49
Supporting Virtual Switching Systems Designs 50
Common Access-Distribution Block Designs 51
Multichassis EtherChannels and VSS 52
VSS Design Considerations 53
Dual Active Detection and Recovery 54
VSS Design Best Practices 55
Developing an Optimum Design for Layer 3 55
Managing Oversubscription and Bandwidth 56
Bandwidth Management with EtherChannel 56
Bandwidth Management with 10 Gigabit Interfaces 57
Link Load Balancing 57
Link Load Balancing with EtherChannel 58
EtherChannel Design Versus Equal-Cost Multipathing 59
Routing Protocol Design 60
Build Redundant Triangles 60
Peer Only on Transit Links 60
Summarize at the Distribution Layer 62
First-Hop Redundancy 64
Preempt Delay Tuning 65
Elimination of FHRP in VSS Designs 66
Overview of Gateway Load Balancing Protocol 67
Optimizing FHRP Convergence 69
Supporting a Layer 2 to Layer 3 Boundary Design 71
Layer 2 to Layer 3 Boundary Design Models 71
Layer 2 Distribution Switch Interconnection 71
Layer 3 Distribution Switch Interconnection (with HSRP) 72
Layer 3 Distribution Switch Interconnection (with GLBP) 72
Layer 3 Distribution Switch with VSS Interconnection 73
Layer 3 Access to Distribution Interconnection 74
EIGRP Access Design Recommendations 75
OSPF Access Design Recommendations 76
Potential Design Issues 77
Daisy Chaining Access Layer Switches 77
Cisco StackWise Technology in the Access Layer 78
Too Much Redundancy 79
Too Little Redundancy 80
Example: Impact of an Uplink Failure 80
Example: Impact on Return-Path Traffic 82
Asymmetric Routing (Unicast Flooding) 82
Unicast Flooding Prevention 83
Supporting Infrastructure Services 84
IP Telephony Considerations 84
IP Telephony Extends the Network Edge 84
PoE Requirements 85
Power Budget and Management 87
Multi-VLAN Access Port 89
Soft Phones and Voice VLANs 90
QoS Considerations 90
Recommended Practices for QoS 91
Transmit Queue Congestion 91
QoS Role in the Campus 92
Campus QoS Design Considerations 92
Cisco Catalyst Integrated Security Features 93
Port Security Prevents MAC-Based Attacks 93
DHCP Snooping Protects Against Rogue and Malicious DHCP Servers 94
Dynamic ARP Inspection Protects Against ARP Poisoning 94
IP Source Guard Protects Against Spoofed IP Addresses 95
Example Catalyst Integrated Security Feature Configuration 95
Summary 95
References 96
Review Questions 97
Chapter 3 Developing an Optimum Design for Layer 3 101
Designing Advanced IP Addressing 101
IP Address Planning as a Foundation 102
Summary Address Blocks 102
Summarization for IPv6 103
Changing IP Addressing Needs 104
Planning Addresses 104
Applications of Summary Address Blocks 105
Implementing Role-Based Addressing 105
Bit Splitting for Route Summarization 106
Example: Bit Splitting for Area 1 107
IPv6 Address Planning 107
Bit Splitting for IPv6 108
Addressing for VPN Clients 109
NAT in the Enterprise 109
NAT with External Partners 110
Design Considerations for IPv6 in Campus Networks 111
IPv6 Campus Design Considerations 111
Dual-Stack Model 112
Hybrid Model 112
Service Block Model 114
Designing Advanced Routing 115
Route Summarization and Default Routing 115
Originating Default Routes 116
Stub Areas and Default Route 117
Route Filtering in the Network Design 118
Inappropriate Transit Traffic 118
Defensive Filtering 120
Designing Redistribution 121
Filtered Redistribution 122
Migrating Between Routing Protocols 123
Designing Scalable EIGRP Designs 123
Scaling EIGRP Designs 124
EIGRP Fast Convergence 124
EIGRP Fast-Convergence Metrics 125
Scaling EIGRP with Multiple Autonomous Systems 126
Example: External Route Redistribution Issue 126
Filtering EIGRP Redistribution with Route Tags 127
Filtering EIGRP Routing Updates with Inbound Route Tags 128
Example: Queries with Multiple EIGRP Autonomous Systems 130
Reasons for Multiple EIGRP Autonomous Systems 130
Designing Scalable OSPF Design 131
Factors Influencing OSPF Scalability 131
Number of Adjacent Neighbors and DRs 132
Routing Information in the Area and Domain 132
Designing OSPF Areas 133
Area Size: How Many Routers in an Area? 134
OSPF Hierarchy 134
Area and Domain Summarization 136
Number of Areas in an OSPF Hub-and-Spoke Design 137
OSPF Hub-and-Spoke Design 137
Issues with Hub-and-Spoke Design 138
OSPF Hub-and-Spoke Network Types 140
OSPF Area Border Connection Behavior 141
Fast Convergence in OSPF 142
OSPF Exponential Backoff 143
Tuning OSPF Parameters 143
OSPF LSA Pacing 145
OSPF Event Processing 145
Bidirectional Forwarding Detection 145
Designing Scalable BGP Designs 146
Scaling BGP Designs 146
Full-Mesh IBGP Scalability 147
Scaling IBGP with Route Reflectors 148
BGP Route Reflector Definitions 148
Route Reflector Basics 150
Scaling IBGP with Confederations 151
BGP Confederation Definitions 151
Confederation Basics 151
Confederations Reduce Meshing 152
Deploying Confederations 154
Summary 155
References 157
Review Questions 158
Chapter 4 Advanced WAN Services Design Considerations 161
Advanced WAN Service Layers 161
Enterprise Optical Interconnections 162
Overview of SONET and SDH 163
Enterprise View of SONET 164
WDM Overview 165
CWDM Technical Overview 165
DWDM Technical Overview 166
DWDM Systems 167
RPR Overview 168
RPR in the Enterprise 168
Metro Ethernet Overview 170
Metro Ethernet Service Model 170
Metro Ethernet Architecture 170
Metro Ethernet LAN Services 172
Ethernet Private Line Service 173
Ethernet Relay Service 174
Ethernet Wire Service 175
Ethernet Multipoint Service 175
Ethernet Relay Multipoint Service 176
Any Transport over MPLS 176
Ethernet over MPLS 177
End-to-End QoS 179
Shaping and Policing on Subrate Ethernet WAN 180
Choosing the Right Service 181
VPLS Overview 181
VPLS Architecture Model 182
VPLS in the Enterprise 183
Hierarchical VPLS Overview 184
Scaling VPLS 184
QoS Issues with EMS or VPLS 186
EMS or VPLS and Routing Implications 186
VPLS and IP Multicast 187
VPLS Availability 187
MPLS VPN Overview 187
Customer Considerations with MPLS VPNs 188
Routing Considerations: Backdoor Routes 189
Routing Considerations: Managed Router Combined with Internal Routing 189
Routing Considerations: Managed Router from Two Service Providers 190
Implementing Advanced WAN Services 191
Advanced WAN Service Selection 192
Business Risk Assessment 192
WAN Features and Requirements 194
SLA Overview 195
SLA Monitoring 196
Application Performance Across the WAN 197
WAN CPE Selection Considerations 198
Cisco PfR Overview 200
Cisco PfR Operations 200
Cisco PfR Design and Deployment Considerations 203
Summary 204
References 205
Review Questions 206
Chapter 5 Enterprise Data Center Design 211
Designing the Core and Aggregation Layers 212
Data Center Architecture Overview 213
Benefits of the Three-Layer Model 213
The Services Layer 214
Using Dedicated Service Appliances 215
Data Center Core Layer Design 217
Layer 3 Characteristics for the Data Center Core 218
OSPF Routing Protocol Design Recommendations 220
EIGRP Routing Protocol Design Recommendations 221
Aggregation Layer Design 221
Scaling the Aggregation Layer 223
STP Design 224
Understanding Bridge Assurance 226
Integrated Service Modules 227
Service Module Placement Consideration 227
Service Modules and the Services Layer 228
Active STP, HSRP, and Service Context Alignment 230
Active/Standby Service Module Design 232
Active/Active Service Module Design 232
Establishing Inbound Path Preference 233
Using VRFs in the Data Center 235
Using the Cisco Nexus 7000 Series in the Core and Aggregation Layer 236
VDCs 238
Designs Enabled by VDCs 239
vPCs 241
vPC Best Practices 242
Designs Enabled by vPC 243
Layer 2 Multipathing 244
Designing the Access Layer 245
Overview of the Data Center Access Layer 245
Layer 2 Looped Designs 246
Layer 2 Looped Topologies 247
Layer 2 Looped Design Issues 249
Layer 2 Loop-Free Designs 250
Loop-Free Topologies 251
Example: Loop-Free U Design and Layer 2 Service Modules 253
Example: Loop-Free U Design and Cisco ACE Service Module 254
Layer 2 FlexLink Designs 255
FlexLink Issues and Considerations 256
Comparison of Layer 2 Access Designs 259
Layer 3 Access Layer Designs 260
Multicast Source Support 261
Benefits of Layer 3 Access 262
Drawbacks of Layer 3 Access 262
Blade Server Overview 262
Blade Server Connectivity Options 264
Blade Server Trunk Failover Feature 265
Virtual Blade Switching 266
Cisco Nexus Switch Family in the Access Layer 267
TOR and EOR Designs 267
Static and Dynamic Pinning 267
Cisco Nexus 2000 FEX Dynamic Pinning 268
Virtual Port Channel in the Data Center Access Layer 269
Straight-Through FEX Design 270
Active/Active FEX Design 270
Cisco Nexus 1000V in the Data Center Access Layer 272
Virtual Port Channel Host Mode 273
Design Considerations for the Cisco Nexus 1000V 274
Cisco Nexus 1010 275
Layer 2 or Layer 3 Access Design? 276
Scaling the Data Center Architecture 277
TOR Versus EOR Designs 277
Cabinet Design with TOR Switching 279
Example: Network Topology with TOR Switching Model 280
Cabinet Design with Modular Access Switches 281
Example: Network Topology with Modular Access Switches 281
Cabinet Design with Fabric Extenders 282
Server NIC Density 284
Hybrid Example with a Separate OOB Switch 284
Oversubscription and Uplinks 285
Scaling Bandwidth and Uplink Density 286
Other Things You Might Like
- CCNA 200-301 Hands-on Mastery with Packet Tracer
- Book $39.99
- CCNA 200-301 Hands-on Mastery with Packet Tracer
- eBook $38.39